

BASKETBALL PLAYER TRACKING

Simon Xie, Clive Unger, Kevan Patel

ABSTRACT
The purpose of our project was to develop an
algorithm that can automatically track player
location and movement in sports from game clips.
If successful, we postulate that athletes can be
tracked in real-time by TV Cameras operating on
an obviously more complex version of our
algorithm during a live broadcast. For our study,
we decided to focus on tracking basketball
players due to the smaller player count and
well-defined court. We developed a Python
algorithm that can track basketball players on
each team from a clip of a basketball game.
Tracking players can be beneficial for sports
organizations to monitor the health and workload
of their players as well as analyzing and
developing play strategy. Fundamentals
principles and methodologies of our algorithm are
transferable to tracking players in any sport,
which is the ultimate goal.

 INTRODUCTION
The global sports industry is valued at an
estimated $500 billion and is projected to reach
$615 billion by 2022. Sports viewership pervades
race, ethnicity, religion, and socioeconomic class
and brings people together, making it a core
component of our modern society. Due to its
importance and continuous rapid worldwide
growth, there has been a significant interest in
applying image processing and computer vision
techniques to sports to optimize both play itself
and viewership experience in recent years[1]. In
particular, the ability to track athletes while they
perform has intriguing potential. Ownership and
coaching staff of a sport’s club are very interested
in monitoring the performance and health of their

athletes. With sports contracts reaching exorbitant
amounts, and injuries continuing to rob all sports
of some of its most popular and electrifying
athletes, being able to track and monitor
workload during a game and after can help
minimize injury and save professional and
amateur clubs millions of dollars. In addition,
tracking also has potential in allowing coaching
staff to evaluate strategy and its effectiveness for
both the opposition and their own teams.

In 2005, Harvard vision scientists utilized
image segmentation techniques to successfully
detect an athlete’s jersey number in sports video
clips[2].Since then many other studies have been
conducted on developing a system to
automatically track players during a live
broadcast video. Common documented
challenges include developing the algorithm so
that it can deal with player’s who are overlapping
or running by each other (as in football) and
having it be effective when the camera angle
constantly changes and varies in magnification
during the broadcast[3]. For our project, we
decided to focus on creating an algorithm that can
track players over the course of a few seconds
from a non-live broadcast video of a sporting
event that has already been completed. We aspire
to provide a proof of concept of athlete tracking,
and hope that fundamental elements of our
algorithm can be applied to live-tracking and
analyzing player movements in live broadcasts.
We specifically focused on tracking basketball
players of both teams from a basketball game clip
as the lower player count and well-defined court
make it ideal for developing a proof-of concept
algorithm. The end goal of our algorithm is to
have players separated by team and their

positions distinctly marked on a 2D map of a
standard basketball court. The positions will then
change accordingly as the respective players
move in the input video.

METHODS

The project was written in Python coding
language. We developed and followed a
structured approach that can be transferable to
sporting events aside from basketball. We tried to
automate as much of the process as possible so
none of the processing relied on manual
intervention. The video used in this project is a
Texas vs Baylor game downloaded from
YouTube [4]. We selected this video because it
is our school's team, but we also acknowledge
that the Baylor player jerseys are much easier to
detect.

We break down the basketball player tracking
into five key steps:
1. Court Extraction
2. Detect Players
3. Identify Player Jersey Colors
4. Find Player Coordinates
5. Map Points to 2D Plane

COURT EXTRACTION
We first extract the court from the image so we
can focus only on the actors within the court and
ignore the background audience and other noise.
Identifying the average court color in the RGB or
BGR color spaces is difficult because the values
are heavily affected by shadows and lighting.
Therefore, the frame is changed from the BGR
color mapping to HSV. The HSV color mapping
stands for Hue, Saturation, and Value. The Hue
represents the wavelength of the colors, so it is
much more reliable for color extractions because
the shading of the color does not affect the Hue
value. We plot a histogram of all the Hue values
in the first 10 frames and identify the most
frequent value as the court color since it takes up

the majority of the frame. This value is then used
to binary threshold each frame with a tolerance of
+/- 7. Various morphology filters are applied to
smooth out the image. The result image is then
used as a mask for processing the rest of the
image.

Figure 1: Histogram of Hue Values for one frame

Figure 2: Applied binary threshold with a +/- 7 tolerance

Figure 3: Erode and dilate filters applied to remove artifacts

Figure 4: Overlaid RGB image on court mask

DETECT PLAYERS
Once the court mask is applied to the frame, we
are left with just the players on the court. We
utilize the HOG (Histogram of Oriented

Gradients) and Linear SVM method to try our
best to detect players. Thankfully, OpenCV
already has a pretrained HOG + Linear SVM
model that can be used to detect pedestrians,
which we will use to detect the players[5]. The
model will take an input of bounding box size
and will pan over the whole image to detect
which bounding boxes in the image contains a
pedestrian. We decided to use the RGB color
space to find these bounding boxes as the HOG
detector performed better in this color space. The
model also returns the weights or confidence the
model has for each box. The higher the weight is,
the higher the confidence the model has that it
detected a person. We tested a threshold
confidence that worked the best, and we
determined that a threshold of around .6 worked
the best. One problem with the output of the
model is that there can be redundant bounding
boxes that capture a single player. Therefore, we
must use the non_max_suppresion function from
the imutils library. A quick summary of what this
function does is that it takes bounding boxes that
overlap each other by a certain threshold, and
merges the boxes into one box. After running this
function, all of the bounding boxes discovered
will correspond to a unique player.

Figure 5: Players detected using Hog pedestrian detection

IDENTIFY PLAYER JERSEYS

Once the bounding boxes for the players are
computed, we find the peak Hue value for each
box with the court values masked out. In one of
the histograms shown below, we see that one of
the peak Hue values is 38. We then added all the

peak hue values to a list. The histogram of this
list should be bimodal since there are two primary
jersey colors. We threw out the outliers in the list
as we may have detected the referee or crowd
members. Finally, we averaged the 2 clusters
over Hue values, and those values are used to
represent the average jersey colors of each
respective team.

The image with the court mask is then
thresholded on these hue values +/- 7 and two
masks are created for each team color.
Morphological filters are applied to eliminate
noise and smooth out the player blobs.

Figure 6: Peak Hue value identified for Hog bounding box

FIND PLAYER COORDINATES

From the player masks there should be roughly 5
large blobs that represent players. Sometimes
there is more or less depending on how complex
the frame is. We then identify the 5 largest
connected components in the image using
OpenCV's connected component algorithm. The
centroids of each connected component is used to
represent the player coordinates. The
y-coordinate is shifted down slightly so the
coordinate is closer to the player's feet.

Figure 7: 5 resulting blobs after application of Baylor player

mask

MAP PLAYER POINTS 2D PLANE

We manually identify 6 points in the 3D space
that correspond to points on the 2D representation
of a basketball court. These points are used to
calculate a homography matrix using OpenCV's
findHomography function. This returns a matrix
which can map points in the original space to the
source space. The player coordinates are then
multiplied by this matrix to get their respective
coordinates on the 2D-map.

Figure 8: Demonstrates how the manually labeled reference

points are mapped to 2D court map

We found many inaccuracies resulting from
the camera movement. To compensate, for each
frame we find the top left corner of the court
mask which roughly corresponds to the top left
corner of the court in the image. The offset of this
coordinate from the original manually labeled
top-left corner is used to adjust all points. The
homography matrix is recomputed each frame to
adjust for the camera movement. We found this
greatly improved performance, but were unable
to handle camera zoom.

RESULTS

After mapping the blobs to the 2D court map, we
can see all of the results of a single frame in the
figure below. The Baylor players are shown in
the blue circles and the Texas players are shown
in the green rectangles. All of the Baylor players
are accurately mapped since they have a very
bright and distinct color. However, the Texas
players were not detected as accurately since their
colors are not as bright and distinct. Also, one of
the Texas jerseys is outside of the court mask, so
that player was not easily detected. We were not
able to dilate the court mask anymore since a lot

of the writings on the floor and the
bench/audience were detected, so we had to settle
with a court mask that is only the size of the
court.

Figure 9: Texas and Baylor player locations mapped to 2D court

The work for the project was evenly distributed
between team members. The original team was
Simon and Clive, however Kevan joined later
because his original partner dropped the course.
Simon primarily focused on the player detection
aspect using the HOG identifier and extracting
the jersey colors. Clive started the original court
mask concept and developed the connected
components function to find the player
coordinates. Kevan found the mappings from the
3D court image to the 2D image to create the
homography matrix. He then worked with Clive
to adjust for camera movement. Everyone worked
on the paper and presentation.

FUTURE APPLICATIONS
The methods we developed in the project could
easily be applied to any sporting event. For
example, in a soccer game, the color of the field
would be separated from the color of the players
and the identification and tracking would be
performed the same way.

Given more time, we would have spent more
time testing out methods on multiple videos, so
that it could be a general tool to track players
from any basketball game. One of the challenges
with creating a general tracking is identify the
key points of the court to calculate the
homography from. In our method we manually
labeled points, so we could use something like
SIFT or SURF to identify the court lines.

WHAT WE LEARNED
This project was so fun to work on and we ended
up learning a lot about image processing. First
we understood the trade-offs between different
color spaces. We tested alternatives to RGB such
as YCbBr before sticking with the HSV
colorspace. We learned how HSV is the best way
to extract colors from an image that has multiple
different lighting scenarios. Beyond just color
extract we saw how different color spaces are
advantageous for certain algorithms. For example
the HOG pedestrian detection performed slightly
better in the RGB space. We also realize that if
we were to apply neural networks to the
application we would need to consider which
color spaces to use and how they might affect
performance.

Further, we learned how the basic concepts
we learned at the beginning of class can be taken
a long way to achieve solid results. We did not
use machine learning in this project, simply
because we saw no obvious applications that we
could leverage immediately. Therefore, we relied
on simple morphological filters to denoise our
player extraction. Simple intuitions could guide
the shapes of the structuring elements, but
experimentation ultimately decided the final filter
design. It was surprising how much time was
spent tweaking numbers and observing the
results.

Lastly we learned that tracking multiple
agents in a frame is a difficult problem! We ran
into multiple issues that hurt our accuracy. For
example, the camera movement was hard to
compensate for, especially when the camera
zooms in to a shot. Another issue occurs when
players overlap each other and are detected as one
entity or stand on the edge of the court and are
cut out by the mask. By the end of the project, we
had so many more ideas for how to improve the

project, we wish we would have had time to
experiment and implement them all!

Special thanks to Professor Bovik for the
great course.

REFERENCES
[1] Li, Guangjing, and Cuiping Zhang.
“Automatic Detection Technology of Sports
Athletes Based on Image Recognition
Technology.” ​SpringerLink​, Springer
International Publishing, 18 Jan. 2019,
link.springer.com/article/10.1186/s13640-019-04
15-x.

[2] Ye, Qixiang, et al. “Jersey Number Detection
in Sports Video for Athlete Identification.”
NASA/ADS​, July 2005,
ui.adsabs.harvard.edu/abs/2005SPIE.5960.1599Y
/abstract.

[3]Lu, Wei-Lwun, et al. ​Learning to Track and
Identify Players from Broadcast Sport Videos​.
IEEE Transactions on Pattern Analysis and
Machine Intelligence,
www.cs.ubc.ca/~murphyk/Papers/weilwun-pami1
2.pdf​.

[4]“Texas vs Baylor Men's Basketball
Highlights.” ​Youtube​, 27 Feb. 2019,
https://www.youtube.com/watch?v=-jddnr32hfU​.

[5] Rosebrock, Adrian. “Pedestrian Detection
OpenCV.” ​PyImageSearch​, 2 Aug. 2018,
www.pyimagesearch.com/2015/11/09/pedestrian-
detection-opencv/​.

http://www.cs.ubc.ca/~murphyk/Papers/weilwun-pami12.pdf
http://www.cs.ubc.ca/~murphyk/Papers/weilwun-pami12.pdf
https://www.youtube.com/watch?v=-jddnr32hfU
http://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/
http://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/

