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ABSTRACT 
The purpose of our project was to develop an         
algorithm that can automatically track player      
location and movement in sports from game clips.        
If successful, we postulate that athletes can be        
tracked in real-time by TV Cameras operating on        
an obviously more complex version of our       
algorithm during a live broadcast. For our study,        
we decided to focus on tracking basketball       
players due to the smaller player count and        
well-defined court. We developed a Python      
algorithm that can track basketball players on       
each team from a clip of a basketball game.         
Tracking players can be beneficial for sports       
organizations to monitor the health and workload       
of their players as well as analyzing and        
developing play strategy. Fundamentals    
principles and methodologies of our algorithm are       
transferable to tracking players in any sport,       
which is the ultimate goal. 
 

              INTRODUCTION 
The global sports industry is valued at an        
estimated $500 billion and is projected to reach        
$615 billion by 2022. Sports viewership pervades       
race, ethnicity, religion, and socioeconomic class      
and brings people together, making it a core        
component of our modern society. Due to its        
importance and continuous rapid worldwide     
growth, there has been a significant interest in        
applying image processing and computer vision      
techniques to sports to optimize both play itself        
and viewership experience in recent years[1]. In       
particular, the ability to track athletes while they        
perform has intriguing potential. Ownership and      
coaching staff of a sport’s club are very interested         
in monitoring the performance and health of their  

 

 
 
athletes. With sports contracts reaching exorbitant      
amounts, and injuries continuing to rob all sports        
of some of its most popular and electrifying  
athletes, being able to track and monitor       
workload during a game and after can help        
minimize injury and save professional and      
amateur clubs millions of dollars. In addition,       
tracking also has potential in allowing coaching       
staff to evaluate strategy and its effectiveness for        
both the opposition and their own teams.  

In 2005, Harvard vision scientists utilized      
image segmentation techniques to successfully     
detect an athlete’s jersey number in sports video        
clips[2].Since then many other studies have been       
conducted on developing a system to      
automatically track players during a live      
broadcast video. Common documented    
challenges include developing the algorithm so      
that it can deal with player’s who are overlapping         
or running by each other ( as in football) and          
having it be effective when the camera angle        
constantly changes and varies in magnification      
during the broadcast[3]. For our project, we       
decided to focus on creating an algorithm that can         
track players over the course of a few seconds         
from a non-live broadcast video of a sporting        
event that has already been completed. We aspire        
to provide a proof of concept of athlete tracking,         
and hope that fundamental elements of our       
algorithm can be applied to live-tracking and       
analyzing player movements in live broadcasts.      
We specifically focused on tracking basketball      
players of both teams from a basketball game clip         
as the lower player count and well-defined court        
make it ideal for developing a proof-of concept        
algorithm. The end goal of our algorithm is to         
have players separated by team and their       



 

positions distinctly marked on a 2D map of a         
standard basketball court. The positions will then       
change accordingly as the respective players      
move in the input video.  
 

 
METHODS 

The project was written in Python coding       
language. We developed and followed a      
structured approach that can be transferable to       
sporting events aside from basketball. We tried to        
automate as much of the process as possible so         
none of the processing relied on manual       
intervention. The video used in this project is a         
Texas vs Baylor game downloaded from      
YouTube [4]. We selected this video because it        
is our school's team, but we also acknowledge        
that the Baylor player jerseys are much easier to         
detect.  

We break down the basketball player tracking       
into five key steps: 
1. Court Extraction 
2. Detect Players 
3. Identify Player Jersey Colors 
4. Find Player Coordinates 
5. Map Points to 2D Plane 
 

COURT EXTRACTION 
We first extract the court from the image so we          
can focus only on the actors within the court and          
ignore the background audience and other noise.       
Identifying the average court color in the RGB or         
BGR color spaces is difficult because the values        
are heavily affected by shadows and lighting.       
Therefore, the frame is changed from the BGR        
color mapping to HSV. The HSV color mapping        
stands for Hue, Saturation, and Value. The Hue        
represents the wavelength of the colors, so it is         
much more reliable for color extractions because       
the shading of the color does not affect the Hue          
value. We plot a histogram of all the Hue values          
in the first 10 frames and identify the most         
frequent value as the court color since it takes up          

the majority of the frame. This value is then used          
to binary threshold each frame with a tolerance of         
+/- 7. Various morphology filters are applied to        
smooth out the image. The result image is then         
used as a mask for processing the rest of the          
image. 

 
Figure 1: Histogram of Hue Values for one frame 

 
Figure 2: Applied binary threshold with a +/- 7 tolerance 

 
Figure 3: Erode and dilate filters applied to remove artifacts 

 
Figure 4: Overlaid RGB image on court mask 

 
 
 

DETECT PLAYERS 
Once the court mask is applied to the frame, we          
are left with just the players on the court. We          
utilize the HOG (Histogram of Oriented      



 

Gradients) and Linear SVM method to try our        
best to detect players. Thankfully, OpenCV      
already has a pretrained HOG + Linear SVM        
model that can be used to detect pedestrians,        
which we will use to detect the players[5]. The         
model will take an input of bounding box size         
and will pan over the whole image to detect         
which bounding boxes in the image contains a        
pedestrian. We decided to use the RGB color        
space to find these bounding boxes as the HOG         
detector performed better in this color space. The        
model also returns the weights or confidence the        
model has for each box. The higher the weight is,          
the higher the confidence the model has that it         
detected a person. We tested a threshold       
confidence that worked the best, and we       
determined that a threshold of around .6 worked        
the best. One problem with the output of the         
model is that there can be redundant bounding        
boxes that capture a single player. Therefore, we        
must use the non_max_suppresion function from      
the imutils library. A quick summary of what this         
function does is that it takes bounding boxes that         
overlap each other by a certain threshold, and        
merges the boxes into one box. After running this         
function, all of the bounding boxes discovered       
will correspond to a unique player. 
 

 
Figure 5: Players detected using Hog pedestrian detection 

 
IDENTIFY PLAYER JERSEYS 

Once the bounding boxes for the players are        
computed, we find the peak Hue value for each         
box with the court values masked out. In one of          
the histograms shown below, we see that one of         
the peak Hue values is 38. We then added all the           

peak hue values to a list. The histogram of this          
list should be bimodal since there are two primary         
jersey colors. We threw out the outliers in the list          
as we may have detected the referee or crowd         
members. Finally, we averaged the 2 clusters       
over Hue values, and those values are used to         
represent the average jersey colors of each       
respective team. 

The image with the court mask is then        
thresholded on these hue values +/- 7 and two         
masks are created for each team color.       
Morphological filters are applied to eliminate      
noise and smooth out the player blobs.  

 
Figure 6: Peak Hue value identified for Hog bounding box 

 
FIND PLAYER COORDINATES 

From the player masks there should be roughly 5         
large blobs that represent players. Sometimes      
there is more or less depending on how complex         
the frame is. We then identify the 5 largest         
connected components in the image using      
OpenCV's connected component algorithm. The     
centroids of each connected component is used to        
represent the player coordinates. The     
y-coordinate is shifted down slightly so the       
coordinate is closer to the player's feet. 

 

 
Figure 7: 5 resulting blobs after application of Baylor player 

mask 



 

 
MAP PLAYER POINTS 2D PLANE 

We manually identify 6 points in the 3D space         
that correspond to points on the 2D representation        
of a basketball court. These points are used to         
calculate a homography matrix using OpenCV's      
findHomography function. This returns a matrix      
which can map points in the original space to the          
source space. The player coordinates are then       
multiplied by this matrix to get their respective        
coordinates on the 2D-map.  

 
Figure 8: Demonstrates how the manually labeled reference 

points are mapped to 2D court map 
 

We found many inaccuracies resulting from      
the camera movement. To compensate, for each       
frame we find the top left corner of the court          
mask which roughly corresponds to the top left        
corner of the court in the image. The offset of this           
coordinate from the original manually labeled      
top-left corner is used to adjust all points. The         
homography matrix is recomputed each frame to       
adjust for the camera movement. We found this        
greatly improved performance, but were unable      
to handle camera zoom. 

 
RESULTS 

After mapping the blobs to the 2D court map, we          
can see all of the results of a single frame in the            
figure below. The Baylor players are shown in        
the blue circles and the Texas players are shown         
in the green rectangles. All of the Baylor players         
are accurately mapped since they have a very        
bright and distinct color. However, the Texas       
players were not detected as accurately since their        
colors are not as bright and distinct. Also, one of          
the Texas jerseys is outside of the court mask, so          
that player was not easily detected. We were not         
able to dilate the court mask anymore since a lot          

of the writings on the floor and the        
bench/audience were detected, so we had to settle        
with a court mask that is only the size of the           
court.  

 
Figure 9: Texas and Baylor player locations mapped to 2D court 
 
The work for the project was evenly distributed        
between team members. The original team was       
Simon and Clive, however Kevan joined later       
because his original partner dropped the course.       
Simon primarily focused on the player detection       
aspect using the HOG identifier and extracting       
the jersey colors. Clive started the original court        
mask concept and developed the connected      
components function to find the player      
coordinates. Kevan found the mappings from the       
3D court image to the 2D image to create the          
homography matrix. He then worked with Clive       
to adjust for camera movement. Everyone worked       
on the paper and presentation. 
 

FUTURE APPLICATIONS 
The methods we developed in the project could        
easily be applied to any sporting event. For        
example, in a soccer game, the color of the field          
would be separated from the color of the players         
and the identification and tracking would be       
performed the same way. 

Given more time, we would have spent more        
time testing out methods on multiple videos, so        
that it could be a general tool to track players          
from any basketball game. One of the challenges        
with creating a general tracking is identify the        
key points of the court to calculate the        
homography from. In our method we manually       
labeled points, so we could use something like        
SIFT or SURF to identify the court lines. 



 

 
 
 

WHAT WE LEARNED 
This project was so fun to work on and we ended           
up learning a lot about image processing. First        
we understood the trade-offs between different      
color spaces. We tested alternatives to RGB such        
as YCbBr before sticking with the HSV       
colorspace. We learned how HSV is the best way         
to extract colors from an image that has multiple         
different lighting scenarios. Beyond just color      
extract we saw how different color spaces are        
advantageous for certain algorithms. For example      
the HOG pedestrian detection performed slightly      
better in the RGB space. We also realize that if          
we were to apply neural networks to the        
application we would need to consider which       
color spaces to use and how they might affect         
performance. 

Further, we learned how the basic concepts       
we learned at the beginning of class can be taken          
a long way to achieve solid results. We did not          
use machine learning in this project, simply       
because we saw no obvious applications that we        
could leverage immediately. Therefore, we relied      
on simple morphological filters to denoise our       
player extraction. Simple intuitions could guide      
the shapes of the structuring elements, but       
experimentation ultimately decided the final filter      
design. It was surprising how much time was        
spent tweaking numbers and observing the      
results. 

Lastly we learned that tracking multiple      
agents in a frame is a difficult problem! We ran          
into multiple issues that hurt our accuracy. For        
example, the camera movement was hard to       
compensate for, especially when the camera      
zooms in to a shot. Another issue occurs when         
players overlap each other and are detected as one         
entity or stand on the edge of the court and are           
cut out by the mask. By the end of the project, we            
had so many more ideas for how to improve the          

project, we wish we would have had time to         
experiment and implement them all!  

Special thanks to Professor Bovik for the       
great course. 
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