

CREATING “ABSTRACT” REPRESENTATIONS OF VIDEO USING LATENT

SPACE STEERING OF GENERATIVE ADVERSARIAL NEURAL NETWORKS

Kelden Abate, Clive Unger

The University of Texas at Austin

ABSTRACT

Our project uses generative adversarial neural
networks to create abstract, interestingly modified
versions of a source video. These videos could
later be integrated to a social media platform for
user-centric sharing. Our project has four main
components, predicting an object in each frame,
generating an input class vector, generating an
input latent vector, feeding the preceding vectors
into BigGAN, a state-of-the-art network for image
synthesis [1]. Users interact with these
components through a mobile application, where
they can upload their own original content or view
content that has been processed by our network.

1. INTRODUCTION

Videos have become a mainstay of modern
internet communication, representing nearly 70%
of current internet traffic. A large subset of this
traffic is to social media applications where users
upload, download, modify, and interact with
videos. As the use of neural networks in video
processing continues to grow with online video
content, generative adversarial neural networks
provide an interesting way to let users interact
with the visual perception of their content.

Our project presents a method to generate
abstract video from latent space steering of
generative adversarial neural networks. For
application we utilized the BigGAN [1] network
presented by DeepMind, but the methods could be
applied to any generator network.

Our primary goal is to create new abstract,
artistic, or hallucinatory representations of a
source video. We wanted to explore the power
and limitations of GANs when applied to a
sequence of frames. There are some examples of
using neural networks to generate "art" using
concepts such as style transfer or deep dream [2].
We wanted to contribute to this area with our
project.

We believe that a possible useful
implementation of these abstract videos is in
social media applications. Currently, when users
want to modify their own videos in social media
applications such as Instagram or Snapchat, they
are limited to modification that can be applied to
static images, such as filters or stickers. Even the
most complicated video modifications in Snapchat
only rely on basic object detection algorithms.
Abstract videos generated from GANs could be
applied by social media users looking to
personalize their social media posts. Due to the
inherent mobile usage of social media, we found it

1

best to implement a iOS application that allows
users to upload videos from their device and
modify it with our network.

2. METHODS

We present a method to produce artificial or
abstract video by manipulating the input space of
a generative adversarial neural network or GAN.
We then encapsulate this method in an end-to-end
video processing mobile application that allows a
user to upload a video and have a new video
returned. Much of the work uses music videos as
the source input, as that was our original
inspiration for this project, however this method
can be applied to any video.
The following sections will first show the video
processing technique that was developed,
followed by an explanation of the mobile app and
API which provide an interface to the algorithm.

The video processing algorithm works in 4 steps:

1. Predict top ImageNet Class in each frame
2. Generate input class vector from predicted

class
3. Generate input latent vector using 2

methods
a. From random noise
b. From the source frame

4. Feed the latent and class vectors into a
Generator (BigGAN) to produce a new
image for each frame

2.1. Background

In this project we utilize the state-of-the-art image
synthesis network BigGAN developed by
DeepMind. The paper sees that GANs benefit

greatly from scaling therefore, BigGAN is an
extremely large network with roughly 355 million
parameters and batch size 8 times prior work. The
network produces amazing looking images of
relatively high resolution for a GAN. While our
team may not have the resources to train or retrain
such a large network, we can exploit its inputs to
create interesting results. Therefore the majority
of our methods revolve around BigGAN specific
inputs. However, the methods presented could
theoretically be applied to any generator network,
but with varying results.

2.2. ImageNet Class Detection

First the source video is read as an array of
frames, where each frame is downsized to
224x224. Then for each frame we use the
MobileNet image classification algorithm to
predict the top ImageNet class [3] in the frame.
MobileNet is advantageous due to its lightweight
processing, allowing for fast computation on
mobile platforms (such as our iOS application).
Since there are only 1000 ImageNet classes, not
every frame for any given input video will have a
corresponding image class, therefore we average
the predictions across 10 frames to eliminate
outliers [4].

2.3. Create Class Vector Input

Given a set of ImageNet labels, we create a
sequence of class vectors that can be input into a
generator, in our case BigGAN. Each label is one
hot encoded, so if the label is 207 (golden
retriever), we create a 1000 length vector full of
zeros except at index 207. To increase the
variability of the output, we further smooth the

2

class vectors by taking the average vector over 20
frames and interpolating it to the next 20 frame
average. This effect creates vectors that have
partial classes. Normally the class vector would
just have a binary 1 or 0 in a single specific class.
However, we can create class vectors with values
between 0 and 1 for more than one class, thus a
partial class. This created a blending of classes in
the output image. For example, a value of 0.5 at
index 207 (golden retriever) and 0.5 at index 270
(white wolf) should create a hybrid golden
retriever/white wolf in the output image. By
exploiting this property we can get smooth
transitions between classes in the final product.
Before applying this method, transitions were
abrupt and not appropriate for the content we
wanted to create.

Figure 1. ​Class vector generation example

2.4. Create Latent Vectors

A latent vector is produced for each frame in the
original video, to produce a video of the same
length. Normally a GAN generates a single image
output from a latent vector of noise. However, to
create a smooth video we need to generate images
that appear to follow from the previous, otherwise
the result will flash random static images with no
context. We accomplish the task of manipulating
the GAN output by utilizing the concept of latent
space steering presented in [5]. Using simple
transformations in the input space, we can achieve

transformation in the output space. The mappings
are not quite direct and require some
experimentation to derive. Initial experiments
showed some interesting results from applying the
sine function to the latent space shown in Fig. 2.
The objects or figures in the output frames would
somewhat rotate around the center of the frame.

Figure 2.​ Sin(z) applied to latent space

We developed two different methods of
creating a sequence of latent vectors. The first
method starts by generating an initial noise vector
sampled from a normal distribution. Most GANs
use a Gaussian distribution for their latent space,
however BigGAN uses a Gaussian for training but
a truncated Gaussian for inference, the authors
refer to this as the "truncation trick". Therefore we
must resample values to be within a range of -2
and 2. When feeding the network values outside
this range, the resulting image is
incomprehensible.

For our application, the desire is for the
output to have smooth transitions with no quick or
jarring transitions from one frame to the next.
This is accomplished by ensuring successive input
vectors are relatively continuous. We implement
this idea by multiplying the initial latent described
by an "update" vector which multiples each value
by a set value. Additionally, a "wobble" vector of
random values from 0 to 0.05 is multiplied by the
initial latent vector to add more variability. This
process is applied sequentially until there are
enough latent vectors to match every frame in the
source video.

The result of this random latent method is
a video that has objects or figures that morph from

3

one class to the next and move interestingly
throughout the video. However, the movement
and transitions in this video output will be
completely independent from the source besides
the ImageNet class being represented, since the
only thing being derived from the source video is
the object predictions.

In an attempt to capture the relative pacing
of the source video, we instead generate the latent
vectors from the frame itself. The reason we want
to derive the latent vector from the source frames
is because if a portion of the video is stationary or
has little movement, the latent input for that
portion should also not change much. However if
the source video has a lot of action or a scene
change, the input vectors will move quickly and
reflect this. As a result, the output video should
generally follow the pacing of the source. The
frame is converted to grayscale and 140 points are
subsampled to make up the new latent vector. The
intensity values are scaled from (0,255) to (-2, 2)
to match the input domain. The resulting latents
are smoothed to remove noise. We found the best
results with this method, likely due to the
variability in the source video being somewhat
represented in the output.

2.5. Video Generation

Once a latent and class vector has been created for
each corresponding frame in the source video, we
feed them into the BigGAN network to generate a
new artificial frame. There are multiple variants
of the BigGAN model for different resolutions,
but we choose the model which creates images of
256x256.

Once all the frames are computed, we
sequence them into a single video and match the

source audio with the new video. We find the best
results on music videos, as they have a variety of
classes and movements that create interesting
representations from BigGAN. With the matching
music, the final product looks especially
interesting, both resembling abstract,
hallucinogenic art, and creating an obvious
abstract version of the input video.

2.6. Mobile Application

We have written a mobile application for iOS
devices that allow users to upload their own
videos to be modified through our network. We
chose iOS devices over Android devices for
several reasons. Most importantly, recent Apple
A-series processors have a dedicated 8-core
processor dedicated to neural network
computation. Though we currently process videos
on the cloud, we believe that moving to mobile
computation in the future could provide time and
resource savings when making computations.
Additionally, we decided not to make a
cross-platform application through react-native
(compatible with iOS, Android, and web
applications) due to the overly restrictive nature of
the platform, poor user experience, and inability
to take advantage of the computing resources
available in modern smartphones.

Our application is written natively in
Swift. When a user opens the application, they are
presented with an option to choose a video from
their camera roll. The video is then compressed,
making it easier to save and push to our API. This
video is then saved in a sandboxed filesystem
relative to the application, eliminating the
possibility of corruption to the user’s original
video. Relevant file information, such as name,

4

category, and location, are all stored in a JSON
file that allows the application to dynamically
populate lists of all content that the user has either
uploaded or received on their device. After
selecting a video, an API call is made that begins
running the video through our network.

2.7. Application and API Communication

We realize the mobile users will not want to wait
significant amounts of time for their videos to
process. This is why we employed an app that
calls a REST API [6] for backend computation.
The backend is a Flask app written in Python.
Flask was chosen because of its integration with
RESTful APIs and its built-in development server.
We chose Python because we wanted a Flask app,
but the language is also advantageous due to its
ability to easily integrate with our neural models.
Currently, cloud computing resources process
videos faster than our mobile devices are able to.
Additionally, we focused on lightweight API calls
that improve processing speed. This is a reason
why we chose MobileNet to compute our initial
object detection on all video frames. Additionally,
we tested methods of compressing our videos
on-device, which theoretically allows for a
quicker API call and less time waiting for videos
to be processed before downloading. Finally, once
a video has been compressed, a user streams that
video on their device instead of downloading it
before viewing. We found that this significantly
reduces a time that a user has to wait between
uploading their video and viewing modified
content.

3. RESULTS

We achieved a final product that takes a source
video and successfully outputs a generative
representation of it. The quality of the output
varies with the input. We find that more natural
scenes with landscapes or mountains have quite
pleasing generated responses, likely due to the
presence of ImageNet classes. However, more
complex videos, especially ones with many
people, gave noisy, uninterpretable videos. Since
BigGAN was trained on ImageNet, there is no
explicit representation of humans beyond when
they are in the background of the image.
Therefore, our technique also struggles with
humans. Overall, the best generated videos come
from scenes with a strong presence of ImageNet
classes. Figure X shows a few processed frames
from the music video for "Holocene" by Bon Iver
[7]. You can see the landscapes are accurately
portrayed, but the boy's jacket is classified as a
polar bear.

Figure 3. ​Example Frames from "Holocene" Music Video [7]

The results of this unorthodox video
processing method are difficult to quantify.
Arguably the initial goal insists that no numeric
value could be measured since we are generating
"abstract" representations of a video. The
objective was really to explore the potential and
limitations of state of the art generative networks,

5

by exploiting their input space to the maximum
degree. By doing so we are able to achieve
extremely interesting somewhat "psychedelic"
outputs from the network, some good, some bad.

The final user-facing application allows
users to upload a new, original video from their
phone’s library, receive the modified version, and
view all videos and modifications that they have
uploaded or received in the past. After a user has
uploaded a video, our app stores the video locally
in our application. When storing locally, Apple
requires the video to be stored in a sandboxed data
structure independent of other system data. To
index these sandboxed locations, we are using a
single JSON file that keeps track of the relative
file paths of a user’s videos. By keeping track of
these paths, we are able to use Apple’s AV Player
library to playback both the original content and
modified content to the user in our app [8].

In order to save both space and time, we
stream the processed video from our web server.
We know that users will be impatient when
waiting for a video to be processed, so we attempt
to minimize the time they spend waiting.
Additionally, the aforementioned on-device
compression was implemented with HEVC,
which Apple requires when storing videos in their
sandboxed data structure. This compression of
user uploaded videos does indeed reduce the
amount of time it takes to upload and receive
videos. However, time optimization should
certainly be a future focus of this project, as it
currently takes about one minute to process a
single ten second clip.

Figure 4. ​Mobile application homepage displaying ability to

upload new video and playback existing videos

4. FUTURE APPLICATIONS

We feel we have just scratched the surface of
what is possible with latent space steering. With
further experimentation one could discover even
more complex transformations of the BigGAN
latent space that map to real transformations in the
image space. Generating video with GANs is a

6

young area of research, as most work is focused
on static images.
Orthogonally, the methods presented could
potentially be used to learn more about
interpretability of generator networks.
Further, our mobile application and API is not
limited to this single model. With our modular
design software architecture we could easily add
new video processing models to do things such as
style transfer or motion detection.

As mentioned previously, we make an API
call in order to perform all video computation
with cloud resources. However, in the future, we
believe that performing at least partial
computation on the mobile device may require
less time from initially uploading a video to
playing back a new generated video.
Implementing this would begin with
implementing our model with Apple’s Core ML 3
framework, which would allow us to use the
Neural Engine present in modern iPhones.

5. REFLECTIONS

This project offered an immense learning
opportunity for both of us. The team had limited
experience with GAN's beyond knowing how to
train them, and that they are difficult to train. We
found it interesting to explore the latent space of
BigGAN and find all the interesting things it
could create, many of which did not make it to the
final product. Also, when exploring other
concepts to manipulate the style of a video we
learned about the basics of Style Transfer and
Deep Dream.

We also gained experience using industry
standard machine learning and video processing
tools such as TensorFlow, Keras, and OpenCV.

Google Colab greatly enhanced our productivity
while working remotely.

Upon beginning this project, neither of us
had ever written an iPhone application in Swift. In
order to write the frontend of this project, we had
to research basic concepts such as data types, file
storage, and user interface components.
Additionally, we had to find methods to improve
the performance of our application, such as
on-device compression and fast API calls. This
led us to use several frameworks already
implemented in Swift, such as Apple’s provided
HEVC compression for user selected videos or the
AlamoFire library for fast and lightweight API
calls [9].

While we worked hard to implement an
effective API that allowed end-to-end video
processing, we understand that it would be
handled by several people in several teams at a
large company. It was not difficult to get a basic
API and application that communicated with each
other. However, we recognize that our application
and model have limitations in terms of speed,
efficiency, and robustness that real-world users
require. We faced several challenges to this
extent, including formatting data, transmitting
data, and compressing data while maintaining
integrity. However, a large company would likely
have developers already experienced in languages
that were new to us, with the goal of scaling to
millions of users.

The work for the project was evenly
distributed between team members. Initially,
Clive researched GAN modifications such as
BigGAN, CycleGAN, and DeepDream while
Kelden worked on using MobileNet to generate
labels to feed to BigGAN. Due to the restrictions
on teamwork originating from COVID-19, the

7

two of us had to find a way to work relatively
independently. After narrowing the scope of the
project, Clive worked on generating the correct
input vectors and refining our modifications of
BigGAN due to his experience in machine
learning, while Kelden developed the mobile
application, due to his previous experience in
mobile development. Both of us worked on the
final paper and presentation.

Overall, we had fun with this project
because of the creativity we could apply. We
frequently passed some of our favorite music
videos to each other and discovered how they
could be manipulated. Thank you for the
wonderful class Professor Bovik!

6. REFERENCES

[1] A. Brock, J. Donahue, K. Simonyan, “Large
Scale GAN Training for High Fidelity Natural
Image Synthesis,” ​2019 International Conference
on Learning Representations (ICLR),​Cambrdge,
MA, USA, 2019.

[2] Deep Dream Generator, ​Human AI
Collaboration, ​https://deepdreamgenerator.com/​,
2020.

[3] A. Howard, M. Zhu, B. Chen, D.
Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile
Vision Applications,” Google Inc, 2017.

[4] J. Deng, W. Dong, R. Socher, L. Li, K. Li, L.
Fei, “ImageNet: A Large-Scale Hierarchical
Image Database,” ​2009 IEEE Conference on

Computer Vision and Pattern Recognition​,
Miami, FL, 2009, pp. 248-255.

[5] A. Jahanian, L. Chai, P. Isola, “On the
Steerability of Generative Adversarial Networks,”
2020 International Conference on Learning
Representations (ICLR), ​Cambridge, MA, USA,
2020.

[6] Arteko, “The Best Way to Use REST APIs in
Swift,” ​Medium.com​, 2019.

[7] Iver, B., "Bon Iver - Holocene (Official Music
Video)" ​Aug 17, 2011 Youtube​, 2011
https://www.youtube.com/watch?v=8T0cHQb39
GY

[8] C. Mash, “AVPlayer & SwiftUI,” ​Flawless
iOS,
https://medium.com/flawless-app-stories/avplayer
-swiftui-b87af6d0553​, 2019.

[9] J. Shier et. al, “Alamofire,” ​GitHub
Repository, ​2020,
https://github.com/Alamofire/Alamofire

[10] J. Brownlee, “A Gentle Introduction to
BigGAN the Big Generative Adversarial
Network,” Machine Learning Mastery, 2019,
https://machinelearningmastery.com/a-gentle-intr
oduction-to-the-biggan/

[11] Z. Alyafei, “BigGanEx: A Dive into the
Latent Space of BigGan,” The Gradient, 2018,
https://thegradient.pub/bigganex-a-dive-into-the-l
atent-space-of-biggan/

8

https://deepdreamgenerator.com/
https://www.youtube.com/watch?v=8T0cHQb39GY
https://www.youtube.com/watch?v=8T0cHQb39GY
https://medium.com/flawless-app-stories/avplayer-swiftui-b87af6d0553
https://medium.com/flawless-app-stories/avplayer-swiftui-b87af6d0553
https://github.com/Alamofire/Alamofire
https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/
https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/
https://thegradient.pub/bigganex-a-dive-into-the-latent-space-of-biggan/
https://thegradient.pub/bigganex-a-dive-into-the-latent-space-of-biggan/

