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ABSTRACT 

 
Our project uses generative adversarial neural      
networks to create abstract, interestingly modified      
versions of a source video. These videos could        
later be integrated to a social media platform for         
user-centric sharing. Our project has four main       
components, predicting an object in each frame,       
generating an input class vector, generating an       
input latent vector, feeding the preceding vectors       
into BigGAN, a state-of-the-art network for image       
synthesis [1]. Users interact with these      
components through a mobile application, where      
they can upload their own original content or view         
content that has been processed by our network. 
 

1.  INTRODUCTION 
 

Videos have become a mainstay of modern       
internet communication, representing nearly 70%     
of current internet traffic. A large subset of this         
traffic is to social media applications where users        
upload, download, modify, and interact with      
videos. As the use of neural networks in video         
processing continues to grow with online video       
content, generative adversarial neural networks     
provide an interesting way to let users interact        
with the visual perception of their content. 

Our project presents a method to generate       
abstract video from latent space steering of       
generative adversarial neural networks. For     
application we utilized the BigGAN [1] network       
presented by DeepMind, but the methods could be        
applied to any generator network. 

Our primary goal is to create new abstract,        
artistic, or hallucinatory representations of a      
source video. We wanted to explore the power        
and limitations of GANs when applied to a        
sequence of frames. There are some examples of        
using neural networks to generate "art" using       
concepts such as style transfer or deep dream [2].         
We wanted to contribute to this area with our         
project. 

We believe that a possible useful      
implementation of these abstract videos is in       
social media applications. Currently, when users      
want to modify their own videos in social media         
applications such as Instagram or Snapchat, they       
are limited to modification that can be applied to         
static images, such as filters or stickers. Even the         
most complicated video modifications in Snapchat      
only rely on basic object detection algorithms.       
Abstract videos generated from GANs could be       
applied by social media users looking to       
personalize their social media posts. Due to the        
inherent mobile usage of social media, we found it         
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best to implement a iOS application that allows        
users to upload videos from their device and        
modify it with our network. 
 

2. METHODS 
 

We present a method to produce artificial or        
abstract video by manipulating the input space of        
a generative adversarial neural network or GAN.       
We then encapsulate this method in an end-to-end        
video processing mobile application that allows a       
user to upload a video and have a new video          
returned. Much of the work uses music videos as         
the source input, as that was our original        
inspiration for this project, however this method       
can be applied to any video. 
The following sections will first show the video        
processing technique that was developed,     
followed by an explanation of the mobile app and         
API which provide an interface to the algorithm. 
 
The video processing algorithm works in 4 steps: 

1. Predict top ImageNet Class in each frame 
2. Generate input class vector from predicted      

class 
3. Generate input latent vector using 2      

methods 
a. From random noise 
b. From the source frame 

4. Feed the latent and class vectors into a        
Generator (BigGAN) to produce a new      
image for each frame 

 
2.1. Background 
 
In this project we utilize the state-of-the-art image        
synthesis network BigGAN developed by     
DeepMind. The paper sees that GANs benefit       

greatly from scaling therefore, BigGAN is an       
extremely large network with roughly 355 million       
parameters and batch size 8 times prior work. The         
network produces amazing looking images of      
relatively high resolution for a GAN. While our        
team may not have the resources to train or retrain          
such a large network, we can exploit its inputs to          
create interesting results. Therefore the majority      
of our methods revolve around BigGAN specific       
inputs. However, the methods presented could      
theoretically be applied to any generator network,       
but with varying results. 
 
2.2. ImageNet Class Detection 
 
First the source video is read as an array of          
frames, where each frame is downsized to       
224x224. Then for each frame we use the        
MobileNet image classification algorithm to     
predict the top ImageNet class [3] in the frame.         
MobileNet is advantageous due to its lightweight       
processing, allowing for fast computation on      
mobile platforms (such as our iOS application).       
Since there are only 1000 ImageNet classes, not        
every frame for any given input video will have a          
corresponding image class, therefore we average      
the predictions across 10 frames to eliminate       
outliers [4]. 
 
2.3. Create Class Vector Input 
 
Given a set of ImageNet labels, we create a         
sequence of class vectors that can be input into a          
generator, in our case BigGAN. Each label is one         
hot encoded, so if the label is 207 (golden         
retriever), we create a 1000 length vector full of         
zeros except at index 207. To increase the        
variability of the output, we further smooth the        
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class vectors by taking the average vector over 20         
frames and interpolating it to the next 20 frame         
average. This effect creates vectors that have       
partial classes. Normally the class vector would       
just have a binary 1 or 0 in a single specific class.            
However, we can create class vectors with values        
between 0 and 1 for more than one class, thus a           
partial class. This created a blending of classes in         
the output image. For example, a value of 0.5 at          
index 207 (golden retriever) and 0.5 at index 270         
(white wolf) should create a hybrid golden       
retriever/white wolf in the output image. By       
exploiting this property we can get smooth       
transitions between classes in the final product.       
Before applying this method, transitions were      
abrupt and not appropriate for the content we        
wanted to create. 

 
Figure 1. ​Class vector generation example 

 
2.4. Create Latent Vectors 
 
A latent vector is produced for each frame in the          
original video, to produce a video of the same         
length. Normally a GAN generates a single image        
output from a latent vector of noise. However, to         
create a smooth video we need to generate images         
that appear to follow from the previous, otherwise        
the result will flash random static images with no         
context. We accomplish the task of manipulating       
the GAN output by utilizing the concept of latent         
space steering presented in [5]. Using simple       
transformations in the input space, we can achieve        

transformation in the output space. The mappings       
are not quite direct and require some       
experimentation to derive. Initial experiments     
showed some interesting results from applying the       
sine function to the latent space shown in Fig. 2.          
The objects or figures in the output frames would         
somewhat rotate around the center of the frame. 

 
Figure 2.​ Sin(z) applied to latent space 

We developed two different methods of      
creating a sequence of latent vectors. The first        
method starts by generating an initial noise vector        
sampled from a normal distribution. Most GANs       
use a Gaussian distribution for their latent space,        
however BigGAN uses a Gaussian for training but        
a truncated Gaussian for inference, the authors       
refer to this as the "truncation trick". Therefore we         
must resample values to be within a range of -2          
and 2. When feeding the network values outside        
this range, the resulting image is      
incomprehensible. 

For our application, the desire is for the        
output to have smooth transitions with no quick or         
jarring transitions from one frame to the next.        
This is accomplished by ensuring successive input       
vectors are relatively continuous. We implement      
this idea by multiplying the initial latent described        
by an "update" vector which multiples each value        
by a set value. Additionally, a "wobble" vector of         
random values from 0 to 0.05 is multiplied by the          
initial latent vector to add more variability. This        
process is applied sequentially until there are       
enough latent vectors to match every frame in the         
source video.  

The result of this random latent method is        
a video that has objects or figures that morph from          
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one class to the next and move interestingly        
throughout the video. However, the movement      
and transitions in this video output will be        
completely independent from the source besides      
the ImageNet class being represented, since the       
only thing being derived from the source video is         
the object predictions. 

In an attempt to capture the relative pacing        
of the source video, we instead generate the latent         
vectors from the frame itself. The reason we want         
to derive the latent vector from the source frames         
is because if a portion of the video is stationary or           
has little movement, the latent input for that        
portion should also not change much. However if        
the source video has a lot of action or a scene           
change, the input vectors will move quickly and        
reflect this. As a result, the output video should         
generally follow the pacing of the source. The        
frame is converted to grayscale and 140 points are         
subsampled to make up the new latent vector. The         
intensity values are scaled from (0,255) to (-2, 2)         
to match the input domain. The resulting latents        
are smoothed to remove noise. We found the best         
results with this method, likely due to the        
variability in the source video being somewhat       
represented in the output. 
 
2.5. Video Generation 
 
Once a latent and class vector has been created for          
each corresponding frame in the source video, we        
feed them into the BigGAN network to generate a         
new artificial frame. There are multiple variants       
of the BigGAN model for different resolutions,       
but we choose the model which creates images of         
256x256.  

Once all the frames are computed, we       
sequence them into a single video and match the         

source audio with the new video. We find the best          
results on music videos, as they have a variety of          
classes and movements that create interesting      
representations from BigGAN. With the matching      
music, the final product looks especially      
interesting, both resembling abstract,    
hallucinogenic art, and creating an obvious      
abstract version of the input video. 
 
2.6. Mobile Application 
 
We have written a mobile application for iOS        
devices that allow users to upload their own        
videos to be modified through our network. We        
chose iOS devices over Android devices for       
several reasons. Most importantly, recent Apple      
A-series processors have a dedicated 8-core      
processor dedicated to neural network     
computation. Though we currently process videos      
on the cloud, we believe that moving to mobile         
computation in the future could provide time and        
resource savings when making computations.     
Additionally, we decided not to make a       
cross-platform application through react-native    
(compatible with iOS, Android, and web      
applications) due to the overly restrictive nature of        
the platform, poor user experience, and inability       
to take advantage of the computing resources       
available in modern smartphones.  

Our application is written natively in      
Swift. When a user opens the application, they are         
presented with an option to choose a video from         
their camera roll. The video is then compressed,        
making it easier to save and push to our API. This           
video is then saved in a sandboxed filesystem        
relative to the application, eliminating the      
possibility of corruption to the user’s original       
video. Relevant file information, such as name,       
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category, and location, are all stored in a JSON         
file that allows the application to dynamically       
populate lists of all content that the user has either          
uploaded or received on their device. After       
selecting a video, an API call is made that begins          
running the video through our network.  
 
2.7. Application and API Communication 
 
We realize the mobile users will not want to wait          
significant amounts of time for their videos to        
process. This is why we employed an app that         
calls a REST API [6] for backend computation.        
The backend is a Flask app written in Python.         
Flask was chosen because of its integration with        
RESTful APIs and its built-in development server.       
We chose Python because we wanted a Flask app,         
but the language is also advantageous due to its         
ability to easily integrate with our neural models.        
Currently, cloud computing resources process     
videos faster than our mobile devices are able to.         
Additionally, we focused on lightweight API calls       
that improve processing speed. This is a reason        
why we chose MobileNet to compute our initial        
object detection on all video frames. Additionally,       
we tested methods of compressing our videos       
on-device, which theoretically allows for a      
quicker API call and less time waiting for videos         
to be processed before downloading. Finally, once       
a video has been compressed, a user streams that         
video on their device instead of downloading it        
before viewing. We found that this significantly       
reduces a time that a user has to wait between          
uploading their video and viewing modified      
content. 
 
 
 

3. RESULTS 
 
We achieved a final product that takes a source         
video and successfully outputs a generative      
representation of it. The quality of the output        
varies with the input. We find that more natural         
scenes with landscapes or mountains have quite       
pleasing generated responses, likely due to the       
presence of ImageNet classes. However, more      
complex videos, especially ones with many      
people, gave noisy, uninterpretable videos. Since      
BigGAN was trained on ImageNet, there is no        
explicit representation of humans beyond when      
they are in the background of the image.        
Therefore, our technique also struggles with      
humans. Overall, the best generated videos come       
from scenes with a strong presence of ImageNet        
classes. Figure X shows a few processed frames        
from the music video for "Holocene" by Bon Iver         
[7]. You can see the landscapes are accurately        
portrayed, but the boy's jacket is classified as a         
polar bear. 

 
Figure 3. ​Example Frames from "Holocene" Music Video [7]  

The results of this unorthodox video      
processing method are difficult to quantify.      
Arguably the initial goal insists that no numeric        
value could be measured since we are generating        
"abstract" representations of a video. The      
objective was really to explore the potential and        
limitations of state of the art generative networks,        

5 



 
by exploiting their input space to the maximum        
degree. By doing so we are able to achieve         
extremely interesting somewhat "psychedelic"    
outputs from the network, some good, some bad. 

The final user-facing application allows     
users to upload a new, original video from their         
phone’s library, receive the modified version, and       
view all videos and modifications that they have        
uploaded or received in the past. After a user has          
uploaded a video, our app stores the video locally         
in our application. When storing locally, Apple       
requires the video to be stored in a sandboxed data          
structure independent of other system data. To       
index these sandboxed locations, we are using a        
single JSON file that keeps track of the relative         
file paths of a user’s videos. By keeping track of          
these paths, we are able to use Apple’s AV Player          
library to playback both the original content and        
modified content to the user in our app [8]. 

In order to save both space and time, we         
stream the processed video from our web server.        
We know that users will be impatient when        
waiting for a video to be processed, so we attempt          
to minimize the time they spend waiting.       
Additionally, the aforementioned on-device    
compression was implemented with HEVC,     
which Apple requires when storing videos in their        
sandboxed data structure. This compression of      
user uploaded videos does indeed reduce the       
amount of time it takes to upload and receive         
videos. However, time optimization should     
certainly be a future focus of this project, as it          
currently takes about one minute to process a        
single ten second clip. 

 
Figure 4. ​Mobile application homepage displaying ability to 

upload new video and playback existing videos 
 

 
4. FUTURE APPLICATIONS 

 
We feel we have just scratched the surface of         
what is possible with latent space steering. With        
further experimentation one could discover even      
more complex transformations of the BigGAN      
latent space that map to real transformations in the         
image space. Generating video with GANs is a        
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young area of research, as most work is focused         
on static images. 
Orthogonally, the methods presented could     
potentially be used to learn more about       
interpretability of generator networks. 
Further, our mobile application and API is not        
limited to this single model. With our modular        
design software architecture we could easily add       
new video processing models to do things such as         
style transfer or motion detection. 

As mentioned previously, we make an API       
call in order to perform all video computation        
with cloud resources. However, in the future, we        
believe that performing at least partial      
computation on the mobile device may require       
less time from initially uploading a video to        
playing back a new generated video.      
Implementing this would begin with     
implementing our model with Apple’s Core ML 3        
framework, which would allow us to use the        
Neural Engine present in modern iPhones. 
 

5. REFLECTIONS 
 

This project offered an immense learning      
opportunity for both of us. The team had limited         
experience with GAN's beyond knowing how to       
train them, and that they are difficult to train. We          
found it interesting to explore the latent space of         
BigGAN and find all the interesting things it        
could create, many of which did not make it to the           
final product. Also, when exploring other      
concepts to manipulate the style of a video we         
learned about the basics of Style Transfer and        
Deep Dream. 

We also gained experience using industry      
standard machine learning and video processing      
tools such as TensorFlow, Keras, and OpenCV.       

Google Colab greatly enhanced our productivity      
while working remotely. 

Upon beginning this project, neither of us       
had ever written an iPhone application in Swift. In         
order to write the frontend of this project, we had          
to research basic concepts such as data types, file         
storage, and user interface components.     
Additionally, we had to find methods to improve        
the performance of our application, such as       
on-device compression and fast API calls. This       
led us to use several frameworks already       
implemented in Swift, such as Apple’s provided       
HEVC compression for user selected videos or the        
AlamoFire library for fast and lightweight API       
calls [9]. 

While we worked hard to implement an       
effective API that allowed end-to-end video      
processing, we understand that it would be       
handled by several people in several teams at a         
large company. It was not difficult to get a basic          
API and application that communicated with each       
other. However, we recognize that our application       
and model have limitations in terms of speed,        
efficiency, and robustness that real-world users      
require. We faced several challenges to this       
extent, including formatting data, transmitting     
data, and compressing data while maintaining      
integrity. However, a large company would likely       
have developers already experienced in languages      
that were new to us, with the goal of scaling to           
millions of users. 

The work for the project was evenly       
distributed between team members. Initially,     
Clive researched GAN modifications such as      
BigGAN, CycleGAN, and DeepDream while     
Kelden worked on using MobileNet to generate       
labels to feed to BigGAN. Due to the restrictions         
on teamwork originating from COVID-19, the      
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two of us had to find a way to work relatively           
independently. After narrowing the scope of the       
project, Clive worked on generating the correct       
input vectors and refining our modifications of       
BigGAN due to his experience in machine       
learning, while Kelden developed the mobile      
application, due to his previous experience in       
mobile development. Both of us worked on the        
final paper and presentation. 

Overall, we had fun with this project       
because of the creativity we could apply. We        
frequently passed some of our favorite music       
videos to each other and discovered how they        
could be manipulated. Thank you for the       
wonderful class Professor Bovik! 
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